Impact of surrounding tissue on conductance measurement of coronary and peripheral lumen area.

نویسندگان

  • Hyo Won Choi
  • Benjamin Jansen
  • Zhen-Du Zhang
  • Ghassan S Kassab
چکیده

Parallel conductance (electric current flow through surrounding tissue) is an important determinant of accurate measurements of arterial lumen diameter, using the conductance method. The present study is focused on the role of non-uniform geometrical/electrical configurations of surrounding tissue, which are a primary source of electric current leakage. Computational models were constructed to simulate the conductance catheter measurement with two different excitation electrodes spacings (i.e. 12 and 20 mm for coronary and peripheral sizing, respectively) for different vessel-tissue configurations: (i) blood vessel fully embedded in muscle tissue, (ii) blood vessel superficially embedded in muscle tissue, and (iii) blood vessel superficially embedded in muscle tissue with fat covering half of the arterial vessel (anterior portion). The simulations suggest that the parallel conductance and accuracy of measurement is dependent on the inhomogeneous/anisotropic configuration of surrounding tissue, including the asymmetric dimension and anisotropy in electrical conductivity of surrounding tissue. Specifically, the measurement was shown to be accurate as long as the vessel was superficial, regardless of the considerable total surrounding tissue dimension for coronary or peripheral arteries. Moreover, it was shown that the unfavourable impact of parallel conductance on the accuracy of conductance catheter measurement is decreased by the combination of a lower transverse electrical conductivity of surrounding muscle tissue, a smaller electrode spacing and a larger lumen diameter. The present findings confirm that the conductance catheter technique provides an accurate platform for sizing of clinically relevant (i.e. superficial and diseased) arteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Peripheral Vascular Sizing with Conductance Guidewire: Theory and Experiment

Although the clinical range of interventions for coronary arteries is about 2 to 5 mm, the range of diameters of peripheral vasculature is significantly larger (about 10 mm for human iliac artery). When the vessel diameter is increased, the spacing between excitation electrodes on a conductance sizing device must also increase to accommodate the greater range of vessel diameters. The increase i...

متن کامل

Implications of complex anatomical junctions on conductance catheter measurements of coronary arteries.

In vivo, the position of the conductance catheter to measure vessel lumen cross-sectional area may vary depending on where the conductance catheter is deployed in the complex anatomical geometry of arteries, including branches, bifurcations, or curvatures. The objective here is to determine how such geometric variations affect the cross-sectional area (CSA) estimates obtained using the cylindri...

متن کامل

Novel method for measurement of medium size arterial lumen area with an impedance catheter: in vivo validation.

There is no doubt that the transformation of a cardiac catheter into a conductance catheter that allows reliable and accurate assessment of lumen cross-sectional area (CSA) will provide a powerful diagnostic and treatment tool for the invasive cardiologist. The objective of this study was to develop a method based on the impedance catheter that allows accurate and reproducible measurements of C...

متن کامل

Effect of Saline Injection Mixing on Accuracy of Conductance Lumen Sizing of Peripheral Vessels

Transient displacement of blood in vessel lumen with saline injection is necessary in the conductance method for measurement of arterial cross-sectional area (CSA). The displacement of blood is dictated by the interactions between arterial flow hemodynamics and saline injection dynamics. The objective of the present study is to understand how the accuracy of conductance measurements is affected...

متن کامل

Clinical Application of Intravascular Ultrasound in Coronary Artery Disease: An Update

Intravascular ultrasound (IVUS) employs a miniature ultrasound probe positioned at the tip of a coronary catheter to emit ultrasound signal which is reflected from surrounding tissue and then reconstructed into a real-time tomographic gray-scale image. IVUS directly images the vessel inside, allowing measurement of plaque morphology, distribution and exact vessel composition. Recent technical d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 76  شماره 

صفحات  -

تاریخ انتشار 2012